Ma Laboratory

Selected Publications


Li Q, Wang F, Xiao X, Kim C, Bohon J, Kiselar J, Safar JG, Ma J, Surewicz WK. 2018. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions. J Biol Chem 293(48):18494–18503.

Wang F, Wang X, Abskharon R, Ma J. 2018. Prion infectivity is encoded exclusively within the structure of proteinase K-resistant fragments of synthetically generated recombinant PrPScActa Neuropathol Commun 6(1):30.

Wang F, Wang X, Orrú CD, Groveman BR, Surewicz K, Abskharon R, Imamura M, Yokoyama T, Kim YS, Vander Stel KJ, Sinniah K, Priola SA, Surewicz WK, Caughey B, Ma J. 2017. Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog13(7):e1006491.

Abskharon R, Wang F, Vander Stel KJ, Sinniah K, Ma J. 2016. The role of the unusual threonine string in the conversion of prion protein. Sci Rep 6:38877.

Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. 2015. Intraperitoneal infection of wild-type mice with synthetically generated mammalian prionPLoS Pathog 11(7):e1004958. 

Ma J, Wang F. 2014. Prion disease and the “Protein-only hypothesis”. Essays in Biochemistry 56:181–191. DOI: 10.1042/bse0560181

Zhang Y, Wang F, Wang X, Zhang Z, Xu Y, Yu G, Yuan C, Ma J. 2014. Comparison of 2 synthetically generated recombinant prionsPrion 8(2):28669.

Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, Yu G, Yuan C, Ma J. 2013. De novo generation of infectious prions with bacterially expressed recombinant prion proteinFASEB J. 27(12):4768–4775.  

Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, Yang H, Yuan C, Ma J. 2012. Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuliPLoS One 7(11): e48146. 

Ma J. 2012. The role of cofactors in prion propagation and infectivityPLoS Pathog 8(4):e1002589. 

Wang F, Zhang Z, Wang X, Li J, Zha L, Yuan C, Weissmann C, Ma J. 2012. Genetic informational RNA is not required for recombinant prion infectivityJ Virol 86(3):1874–1876.                       

Ma J. 2012. PrP conversion and lipids. In W.-Q. Zou and P. Gambetti (Eds) Prions and Diseases: Volume 1, Physiology and Pathophysiology (107–119). Springer. 

Wang F, Yin S, Wang X, Zha L, Sy M, Ma J. 2010. Role of the highly conserved middle region of PrP in PrP-lipid interactionBiochemistry 49(37):8169-8176.    

Wang F, Wang X, Yuan C, Ma J. 2010. Generating a prion with bacterially expressed recombinant prion proteinScience 327(5869):1132–1135.      

Wang X, Bowers S, Wang F, Pu X, Nelson RJ, Ma J. 2009. Cytoplasmic prion protein induces forebrain neurotoxicityBiochim Biophys Acta 1792(6):555–563.      

Wang F, Yang F, Hu Y, Wang X, Wang X, Jin C, Ma J. 2007. Lipid interaction converts prion protein to a PrPSc-like proteinase K resistant conformation under physiological conditionsBiochemistry 46(23):7045–7053. 

Wang X, Wang F, Arterburn L, Wollmann R, Ma J. 2006. The interaction between cytoplasmic PrP and the hydrophobic lipid core of membrane correlates with neurotoxicityJ Biol Chem 281(19):13478–13484.

Ma J, Wollmann R, Lindquist S. 2002. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298(5599):1781–1785.  

Ma J, Lindquist S. 2002. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298(5599):1785–1788.

Ma J, Lindquist S. 2001. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98(26):14955–14960. 


Wang X, Becker K, Levine N, Zhang M, Lieberman AP, Moore DJ, Ma J. 2019. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun 7(1):41.

Chen X, Kordich JK, Williams ET, Levine N, Cole-Strauss A, Marshall L, Labrie V, Ma J, Lipton JW, Moore DJ. 2019. Parkinson’s disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegenerationProc Natl Acad Sci U S A.

Graham SF, Rey NL, Ugur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P. 2018. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites 8(4).

Wang B, Underwood R, Kamath A, Britain C, McFerrin MB, McLean PJ, Volpicelli-Daley LA, Whitaker RH, Placzek WJ, Becker K, Ma J, Yacoubian TA. 2018. 14-3-3 proteins reduce cell-to-cell transfer and propagation of pathogenic alpha-synucleinJ Neurosci.

Becker K, Wang X, Vander Stel K, Chu Y, Kordower J, Ma J. 2018. Detecting alpha synuclein seeding activity in formaldehyde-fixed MSA patient tissue by PMCAMol Neurobiol

Graham SF, Rey NL, Yilmaz A, Kumar P, Madaj Z, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P. 2018. Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson’s disease reveal distinct metabolic profilesJ Proteome Res.

Brundin P, Ma J, Kordower JH. 2016. How strong is the evidence that Parkinson’s disease is a prion disorder? Curr Opin Neurol 29(4):459–466.

Yu G, Deng A, Tang W, Ma J, Yuan C, Ma J. 2016.  Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicityNeurochem Int 96:113–120.

Yu G, Liu H, Zhou W, Zhu X, Yu C, Wang N, Zhang Y, Ma J, Zhao Y, Xu Y, Liao L, Ji H, Yuan C, Ma J. 2015. In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Exp Neurol 271:13–24.     

Wang N, Wang Y, Yu G, Yuan C, Ma J. 2011. Quinoprotein adducts accumulate in the substantia nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cellsNeurochem Res 36(11):2169–2175.        

Wang X, Thomas B, Sachdeva R, Arterburn L, Frye L, Hatcher PG, Cornwell DG, Ma J. 2006. Mechanism of quinone toxicity involving arylation and induction of ER stressProc Natl Acad Sci USA 103:3604–3609.